
Gaussian kernel on 1D Gaussian data eigendecomposition

1 Problem statement and solution

Given w, σ > 0, solve for λn, ϕn, such that

K(x, y) := e−
(x−y)2

2w2 =
∑
n

λnϕn(x)ϕn(y), EX∼N(0,σ2)[ϕn(X)ϕk(X)] = δnk

Define v := w/σ as a helper variable.
Begin with Mehler’s formula. For any r ∈ (−1,+1),

∞∑
n=0

rnhn(x)hn(y) =
1√

1− r2
exp

[
−r2(x2 + y2)− 2rxy

2(1− r2)

]
(1)

where hn(x) = He(x)/
√
n! is the normalized probabilist’s Hermite polynomial.

Equivalently, for any β > 0,

∞∑
n=0

√
1− r2rn

[
e
− r

2(1+r)β2 x2

hn(x/β)e
− r

2(1+r)β2 y2

hn(y/β)
]
= exp

[
− (x− y)2

2β2(1− r2)/r

]
(2)

Define the ansatz:

ϕn(x) = ce−
x2

2α2 hn

(
x

β

)
(3)

where c, α2, β > 0 are parameters to be determined.
First relation: kernel∑

n

λnϕn(x)ϕn(y) =
∑
n

c2λne
− x2

2α2 hn

(
x

β

)
e−

y2

2α2 hn

(
y

β

)
(4)

We want this to equal e−
(x−y)2

2w2 . This is a direct application of the slightly generalized form of Mehler’s formula,
as long as we have the following relationships:

c2λn =
√
1− r2rn

(1+r)β2

r = α2

w2 = β2(1− r2)/r

(5)

Second relation: orthonormality

EX∼N(0,σ2)[ϕn(x)ϕk(x)] =

∫
e−

x2

2σ2

√
2πσ2

· ce−
x2

2α2 hn

(
x

β

)
ce−

x2

2α2 hk

(
x

β

)
dx (6)

By routine manipulation, it is equal to

c2√
2π

1√
1 + 2σ2

α2

∫
e−

1
2x

2

hn

 σ

β
√
1 + 2σ2

α2

x

hk

 σ

β
√

1 + 2σ2

α2

x

 dx (7)
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Since 1√
2π

∫
e−

1
2x

2

hn(x)hk(x)dx = δnk, orthonormality holds if we haveσ = β
√

1 + 2σ2

α2

c =
(
1 + 2σ2

α2

)1/4 (8)

Now we have 5 equations in 5 unknowns, which is enough. It remains to solve them, which is completely routine.

c2λn =
√
1− r2rn

(1+r)β2

r = α2

w2 = β2(1− r2)/r

σ = β
√

1 + 2σ2

α2

c =
(
1 + 2σ2

α2

)1/4

(9)

Applying the equations, we have

α2 =
w2

1− r
, β2 =

w2r

1− r2
, σ2 =

w2r

1− r2
+

2r

1 + r
σ2 (10)

The last equation then gives a quadratic equation for r

(1− r)2

r
=

w2

σ2
= v2 (11)

with 2 solutions

r =
1

2

[
v2 + 2±

(√
v2 + 4

)
v
]

(12)

Since we need 1− r2 > 0, we pick the negative root. Now plug r into the other equations, we have the complete
solution. 

r = 1
2

(
v2 + 2− v

√
v2 + 4

)
α2 = w2

1−r = v+
√
v2+4
2v w2

β = w
√

r
1−r2 = w

√
1

v
√
v2+4

c =
(√

v2+4
v

) 1
4

λn =
√
1−r2

c2 rn

(13)

It’s easy to check that c4 = 1+r
1−r , which implies

∑∞
n=0 λn = 1, so we can write the solution in a notationally

cleaner form involving just w and r: 

α/w =
√

1
1−r

β/w =
√

r
1−r2

c =
(

1+r
1−r

) 1
4

λn = rn

1−r

(14)

Let ϕn,w,σ and λi,w,σ be defined as above, then our result states that∑
n

λn,w,σϕn,w,σ(x)ϕn,w,σ(y) = e−
(x−y)2

2w2 , EX∼N(0,σ2)[ϕn,w,σ(X)ϕk,w,σ(X)] = δnk

Let x ∼ µ = N (0,Λ) and K(x, x′) = e−
1
2 (x−x′)⊤M(x−x′) where Λ,M are positive definite matrices.

We would again like to find an orthonormal eigendecomposition of the kernel

K(x, x′) =
∑
n

λnϕn(x)ϕn(x
′) (15)
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such that ⟨ϕn, ϕn′⟩ = δnn′ .
To solve this, do a linear transform to whiten the gaussian N (0,Λ) and diagonalize the kernel M , then apply

the previous case.
Whiten the random variable under the measure x ∼ N (0,Λ). Define

z = Λ− 1
2x =⇒ z ∼ N (0, I).

Diagonalize M in those whitened coordinates. First set

N = Λ
1
2MΛ

1
2 ,

which is again positive definite. Diagonalize N as Ω

N = UΩU⊤,

where Ω is diagonal with entries 1/w2
1, . . . , 1/w

2
d. Then define

u = U⊤z, u ∼ N (0, I).

Under these transformations, the kernel becomes

K(x, x′) = e−
1
2 (x−x′)⊤M(x−x′) = e−

1
2 (z−z′)⊤N(z−z′) = e−

1
2 (u−u′)⊤Ω(u−u′).

Because Ω is diagonal, we can write

e−
1
2 (u−u′)⊤Ω(u−u′) =

d∏
j=1

e
− 1

2w2
i

(uj−u′
j)

2

.

Take the tensor product of the 1D case. The solution:
ϕn,M ,Λ(x) =

∏
j ϕn,wj ,1(uj)

λn,M ,Λ =
∏

j λn,wj ,1

Λ
1
2MΛ

1
2 = Udiag(1/w2

1, . . . , 1/w
2
d)U

⊤

u = U⊤Λ− 1
2x

(16)
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